Reinforcement Learning for Automatic Online Algorithm Selection - an Empirical Study
نویسندگان
چکیده
In this paper a reinforcement learning methodology for automatic online algorithm selection is introduced and empirically tested. It is applicable to automatic algorithm selection methods that predict the performance of each available algorithm and then pick the best one. The experiments confirm the usefulness of the methodology: using online data results in better performance. As in many online learning settings an exploration vs. exploitation trade-off, synonymously learning vs. earning trade-off, is incurred. Empirically investigating the quality of classic solution strategies for handling this trade-off in the automatic online algorithm selection setting is the secondary goal of this paper. The automatic online algorithm selection problem can be modelled as a contextual multi-armed bandit problem. Two classic strategies for solving this problem are tested in the context of automatic online algorithm selection: ε-greedy and lower confidence bound. The experiments show that a simple purely exploitative greedy strategy outperforms strategies explicitly performing exploration.
منابع مشابه
Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملReinforcement Learning Based PID Control of Wind Energy Conversion Systems
In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...
متن کاملEvolutionary Computation for Reinforcement Learning
Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces, and cope with partial observability, evolutionary reinforcement-learning approaches have a strong ...
متن کاملHypervolume-Based Multi-Objective Reinforcement Learning
Indicator-based evolutionary algorithms are amongst the best performing methods for solving multi-objective optimization (MOO) problems. In reinforcement learning (RL), introducing a quality indicator in an algorithm’s decision logic was not attempted before. In this paper, we propose a novel on-line multi-objective reinforcement learning (MORL) algorithm that uses the hypervolume indicator as ...
متن کاملAutomatic Selection of Object Recognition Methods Using Reinforcement Learning
Selecting which algorithms should be used by a mobile robot computer vision system is a decision that is usually made a priori by the system developer, based on past experience and intuition, not systematically taking into account information that can be found in the images and in the visual process itself to learn which algorithm should be used, in execution time. This paper presents a method ...
متن کامل